
Journal of  Statistical Physics, Vol. 1, No. 2, 1969 

A Variational Principle foe Boundary 
Value Problems in Kinetic Theory 
Carlo Cercignani 1 

Received April 3, 1969 

A variational principle which applies directly to the integrodifferential form of the 
linearized Boltzmann equation is introduced. Extremely general boundary conditions 
and collision terms are allowed. For a class of interesting problems, the value of the 
functional to be varied is shown to be closely related to quantities of great physical 
interest. The formalism is applied to the treatment of plane Couette flow for different 
forms of the collision term (BGK model, rigid spheres, MaxweU's molecules). 
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1. I N T R O D U C T I O N  

Variational methods have been recently used by different authors dealing with 
kinetic theory, and excellent results have been obtained for the Bhatnagar, Gross, 
and Krook  (BGK) model (1-~ as well as for more-refined models. (s-l~ 

All  these papers make use of  the integral form of the linearized Boltzmann 
equation; accordingly, the trial function does not need to satisfy any boundary 
conditions, and this fact has been exploited to obtain extremely accurate results in 
the transition and nearly free regimes by such unreasonable trial functions as 
Chapman-Enskog solutions with gross variables satisfying the Navier-Stokes 
equations. A disadvantage of the methods employed so far is that they require a 
splitting of the collision operator into two parts in order to build up an integral 
equation; this fact has the consequence that the basic functional changes from problem 
to problem. Also, even simple trial functions produce rather complicated expressions 
for the basic quantities to be evaluated. 
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In this paper, we consider a variational principle which applies directly to the 
integrodifferential form of the linearized Boltzmann equations. The formalism 
developed is then applied to the treatment of a simple standard problem, plane 
Couette flow, for different forms of  the collision term (BGK model, rigid spheres, 
Maxwell's molecules). 

Although new in the kinetic theory of gases, the variational principle presented 
in this paper is closely related to a variational method for the monoenergetic neutron 
transport equation, proposed independently by Pomraning and Clark m'12~ and by 
the present author, a~) A preliminary form of the principle is also sketched in a recent 
book of the author's. ~14) 

2. FORMALISM 

The steady linearized Boltzmann equation can be written as follows: 

c �9 Oh/Ox = Lh  + go (1) 

where h is the perturbation of a suitable Maxwellian)Co, x the position vector of  a 
general molecule, e the molecular velocity vector, L the collision operator, and go a 
source term, which is usually, but not always, zero. 

The boundary conditions to be matched with Eq. (1) have the following 
form a~aS): 

@ f A(c' ~ c) h(x, e') de' (x e O~) (2) h(x, C) ho(x, C) 
c'-n~0 

where ~C2 is the boundary of the region C2 where the gas is contained, and n the normal 
at x pointing into s Here A(e' --~ c) is a suitable kernel describing the influence on h 
of the interaction with the solid walls bounding the gas, h0(x, e) a given function of x 
and c (x ~ ~ )  depending upon the local state of the wall. We shall write Eq. (2) in 
the following more-compact form 

h + = h o + A h -  (3) 

The operator A transforms functions defined for e �9 n < 0 into functions defined for 
e �9 n > 0 and has some notable properties. 

To begin with, we have a4,aS~ 

( f ,  ARg)B = ( A R f ,  g ) .  (4) 

w h e r e f a n d  g are any two functions defined for e �9 n > 0 and belonging to a Hilbert 
space ~ where the scalar product is defined as follows: 

( f  , g)8 ~ f f g f  o l e " n l de 
e.n<O 

(5) 

The reflection operator R is defined by 

R [ f ( x ,  e)l = f ( x ,  e) (6) 
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Accordingly, AR is an operator transforming functions defined for c �9 n > 0 into 
functions of the same type. Equation (4) shows that AR is symmetrical with respect 
to the scalar product defined by  Eq. (5). Further properties of  the operator A are its 
positiveness and its boundedness (with unit norm). In other words, we have 

(g, ARg)B >~ 0 (7) 

(g, ARg)s ~ ]1 g II~ (8) 

where g is defined for e .  n > 0 and, by definition, 

IIf[[~ = ( f , f )  (9) 

Actually, Eqs. (4), (7), and (8) were shown to hold ~1a,1~) when R is replaced b y / ~ ,  
the operator of specular reflection with respect to the normal; since, however, 
R = R~R~, where .R t , the reflection operator in the tangent plane, commutes with 
both R~ and A, Eqs. (4), (7), and (8) follow. 
The equality sign in Eq. (8) holds if, and only if, g is a constant with respect to e. 
In fact, AR leaves a constant unchanged (for a nonporous wall); as a consequence of  
this fact, using Eq. (4) gives 

(1, ARg)B = (1, g)B (10) 

The latter equation, if we put g = Rh-, expresses conservation of  mass at the wall. 
We observe that because of  Eq. (4) and well-known properties of  symmetrical 

operators, Eqs. (7) and (8) also give 

1] ARg []~ ~ [[ g 11~ (11) 

The properties of the collision operator L are perhaps more widely known (see, e.g., 
Cercignanir 

(g, Lh) = (Lg, h) 

(h, Lh) <~ o 

where, for any two functions g(e) and h(e), 

(12) 

(13) 

(g, h) =fghfode (14) 

This equation defines a scalar product in a Hilbert space ~ ,  to which h and g are 
supposed to belong. 
The equality sign in Eq. (13) holds if, and only if, h is a linear combination of the five 
collision invariants 1, e~ (i = 1, 2, 3), c ~, usually denoted by ~b~ (~ = 0, 1, 2, 3, 4). 
The scalar product defined by Eq. (14) induces the following norm 

IIh Ij ~ = (h, h) (15) 

We have introduced two kinds of scalar products for functions defined in velocity 
space: Eq. (5), to be used at each x ~ 0~2, and Eq. (14), to be used at each x ~ ~2. In 
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order to discuss the operator D = e .  (?/~x), i t  is necessary to introduce scalar 
products for functions defined in both velocity space and Q (or ~Q). Therefore, we 
consider the Hilbert spaces ~ @ N and ~ @ ~9 ~, where the scalar products are 
defined as follows: 

((g, h))B = f ~a (g, h)s dS (16) 

((g, h)) = f a  (g' h) dx (17) 

where dx and dS are the volume and surface elements, respectively. Together with these 
scalar products, we introduce the corresponding norms: 

L]I h IL]g = ((h, h))~ = f ]1 h li~ dS (18) 
d Of 2 

Ell h Ill a = ((h, h))  = f I1 h 11 ~ dx (19) 
d 

We note that all the relations previously established for scalar products in ~ and 
hold unchanged in ~ | ~ and dcf | N with the new scalar products replacing the 
previous ones. 
I f  we consider now the operator D = e - (O/Ox) with the homogeneous boundary 
conditions obtained by putting ho = 0 in Eq. (2) or (3), we immediately realize that 
D is not symmetrical with respect to  the scalar product introduced with Eq. (17). 
We have, however, the following result: 

((g, RDh)) = ((RDg, h)) + f c . ngRh dS de 

= ((RDg, h)) -}-((Ag-, Rh-))B -- ((Rg-, Ah-))s (20) 

Equation (4) with the replacements f-:+ Rg-  and g--~ Rh-  (note that R ~ = / ,  the 
identity operator) shows that the last two terms cancel. Therefore, 

((g, RDh)) = ((RDg, h)) (21) 

i.e., the operator RD is symmetrical with respect to the scalar product in oYf @ N. 
We finally observe that, for any central interaction, L commutes with R (as well 

as with any operator equivalent to an orthogonal transformation on c). Accordingly, 

(g, RLh) = (g, LRh) -----(Lg; Rh) = (RLg, h) (22) 

where Eq. (12) has been used. ACcordingly, RL is symmetrical in ~ and, as a con- 
sequence, in Jr' @ N. 

In other words, although the operator D - -  L :is not  symmetrical in ~ @ N, 
R(D -- L) is symmetrical, or, if w e prefer, D .  L is symmetrical in the pseudo- 
Hiibert space with a pseudonorm based on the "scalar product" ((f, g)R ~ ((f, Rg)). 
This "scalar product" has all the usual properties except that ( ( f , f ) ) e  is not a norm, 
because it is not necessarily positive. This circumstance, however, does not influence 
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the well-known connection between symmetrical operators and variational principles. 
In fact, if we consider the functional 

J(/7) = ((/7, R(Z) -- L)/7 -- 2Rgo) ) + ((/7+ --A/7- -- 2ho, ~ - ) ) B  (23) 

where/7 is an arbitrary function, we have 

8J = ((8/7, R(D -- Z;)/7 -- 2Rgo) ) + ((/7, R(D -- L) 8/7)) 

+ ((8/7% ed-))B --  ((A 8/7-, R/7-)). + ((/7+ --  A/7- --  2ho, R ~/7-))B (24) 

The symmetry of R ( D  - -  L )  can now be exploited, taking into account, however, 
that/7 will not satisfy, in general, the boundary conditions; accordingly, 

((/7, R(D -- L) 8/7)) = ((R(D -- L)/7, 8/7)) + ((/7+, R 8/7-))B - ( ( R b ,  ~/7+))~ (25) 

Also, 

((A 8/7-, R/7-))~ = ((R 8/7-, A/7-)) = ((A/7-, R 8/7-)) (26) 

because of Eq. (4) w i t h f  = R 8/7- and g = R/7-. Using Eqs. (25) and (26) in Eq. (24) 
gives 

8J = 2((R(D - -  L ) /7  - -  Rg ,  8/7)) q- 2((/7 + -- A/7- -- ho, R 8/~-))B (27) 

Accordingly, if/7 = h, where h is the solution of Eq. (1) with the boundary conditions 
given by Eq. (3), 8J = 0. If, vice versa, 8J = 0 for arbitrary 8/7 in ~ and on 8s it 
follows that/7 = h. 

3. S O M E  C O N S E Q U E N C E S  

In the above section, we have shown that if J(/7) is defined by Eq. (23), 8J = 0 
for any 8/7 is a necessary as well as sufficient condition for/7 being equal to h, the 
solution of Eqs. (1) -~ (3). The variations given to/7 are completely arbitrary both in 
~2 and on 8g2. If, however, we restrict the class of admissible/7 in such a way that all 
of them satisfy the boundary condition, then the expression for J(/7) slightly simplifies 
as follows: 

J(/7) = ((/7, R(D -- L) -- 2Rgo)) -- ((ho, Rh-))B (28) 

It is interesting to examine the value attained by J when/7 = h; both Eq. (23) and 
(28) give 

J(h) = - - ( (Rgo , h)) - -  ((ho , Rh- ) )B  (29) 

This result acquires its full meaning only when we examine the expressions for 
ho and go �9 The most typical case of go =/= 0 is Poiseuille flow in a tube of arbitrary but 
constant section. In this case, h0 = 0, and go is equal to a constant times the component 
of e along the tube axis; accordingly, the value attained by J for/7 = h is proportional 
to the flow rate. 
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In other interesting cases, go = 0, and h o becomes the only source term in the 
problem. Now, ho is not a completely arbitrary function, because it arises a4,15) f rom 
linarization of the boundary conditions for the nonlinear Boltzmann equation. By 
means of the principle of  detailed balance at the wall and using the general expression 
for ho ,(14,~a) it is not difficult to show that h0 has the following expression: 

ho = ~bo+ - -  A~bo- (30) 

where 

~o(X, c) = 2 e .  Uo(X) + ( d  - 3/2) -o(X) (x e eR) (31) 

Here, uo(x ) and r(x) are the deviations of  the velocity and temperature of the boundary 
f rom those of the basic Maxwellian fo ; e and u are scaled with (2kTo/m)l/2 and r 
with To, k being the universal Boltzmann constant, m the molecular mass, and T o 
the temperature in fo .  

Inserting go = 0 and ho from Eq. (30) into Eq. (29), we find 

J(h) = - ((~o +, Rh- ) ) ,  + ((A~o-, Rh-))~ 

= -- ( (r  +, Rh-))~ + ((Rr Ah-))~ 

= --((R~bo-, ~bo+, - -  A~bo-)) + ((R~bo-, h+)) - -  ((~bo+, Rh-))B (32) 

The first term is a known function, while the second and the third terms can be written 
as follows: 

((R~o-,  h+)) - ((~o +, Rh-))~ = f e .  n o~o(X, - -  e) h(x, e) de dS 

= f c) c] 
+ 

= - -2  ( u o "p ,  dS + 2 ( "roq• dS (33) 
d . /  

Here, p~ is the normal stress vector (its components arepijnj) or, rather, the pertubation 
part  of the normal stress vector, and qn = q " n is the normal component  of  heat flux. 
The mass conservation at the wall [Eq. (10) with g = Rh-] has been taken into account. 

We observe now that it is convenient, without loss of  generality, to consider 
separately the two cases uo = 0 and -r 0 = 0, thanks to linearity. I t  is also frequent, 
albeit not necessary, that Uo and r o can be taken to be constant (u0 equals the free- 
stream velocity in flows past a body, or the relative velocity of one wall with respect 
to the other in Couette flows, ~o the temperature difference). When the latter circum- 
stance holds, the functional becomes proportional to a quantity of physical interest 
(e.g., a drag or heat transfer coefficient). We note that even if u0 is not constant, but 
describes a solid body rotation [Uo ~ too • (x - -  Xo), with to o a constant], the fun- 
tional acquires a simple meaning, being proportional to the torque upon the body. 

These results were known previously c1-1~ for the variational principles based 
on the integral version of the Boltzmann equation, but appeared as fortuitous 



A Variational Principle for Boundary Value Problems in Kinetic Theory 303 

coincidences arising f rom suitable manipulations to be repeated for each problem; 
in addition, the quoted papers a-x~ took into account particularly simple boundary 
conditions. Here, for the first time, as far as we know, a common root for all the 
different cases appears; also, the limits of  applicability of  the very useful connection 
between the functional and the physical quantities of  basic interest are clearly shown. 

4. A P P L I C A T I O N  T O  PLANE C O U E T T E  F L O W  

As is well known, the practical advantages of  the variational principle are of  
twofold nature: on the one hand, they give a standard recipe for writing down approx- 
imate equations for a "best  fitting" of  the parameters appearing in a suitably restricted 
class of  trial functions; on the other hand, they allow the functional J to be evaluated 
with great accuracy, a particularly appealing circumstance when J can be related to 
quantities of great physical interest, as in the simple case to be treated here as an 
example, plane Couette flow. 

Plane Couette flow is the flow of a gas between parallel plates located at x = •  
and moving with velocities q: U/2 in the direction of  the z axis. mln,m I f  we assume 
as trial function 

fi = 2e~(o~x 4- fc .  q- 7 sgn c.) (34) 

where ~,/3, and 7 are adjustable constants, we shall certainly obtain results correct 
in both the free-molecular and continuum limits, at least for Maxwell molecules and 
the B G K  model. 

Inserting Eq. (34) into Eq. (23), we obtain 

S(/~) = - -  [1/(2~/~r)] ~z8 z -b [(2/V'~r) - -  48131 f2 

q- [(2/~/g) - -  48Ix] yz -f- 8a/3 q- (2/V/~r) 8o~y (35) 

+ (2 - -  8812) Ely + (US/V~r) o~ q- Uf  q- (2V/a/~r) y 

where velocities are scaled with (2kTo/m) as above, and diffuse reflection has been 
assumed at the walls; Ix,  /~, a n d / a  are three quantities to be defined below. The 
condition 3J  = 0 gives 

( a i r ' g )  = - -  f - -  (21~F~) 7 = V/~&~ 

(8/2) o~ q- [(2/~/~r) - -  43Ia]/3 q- (1 - -  48/2) y = - -  UI2 (36) 

(8/V'~r) o~ q- (1 - -  4812)/3 q- [ ( 2 / ~ )  - -  48/11 7 = - -  U/~/,~ 

Solving this system of three linear algebraic equations, we obtain 

c, = [8U ~/gr(2 V'grI2 - - / 1  -- 4Ia) + 1 6 r r S ( I l h -  I2=)]/A 

f = [4US(TrI 1 - -  2 ~ I~)]/Zl (37) 

7 = - -  [U(4 - -  rr) - -  4US(TrI~ - -  2 ~ Ia)]/A 
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where 

A = 167r(Ili a -- /22) 8 z + [16rrI 2 --  2 V~r (4 + rr) 11 --  16 V~r/a] 3 + 2(4 --  7r) (38) 

I 1 = rr -a/2 f c, sgn c. L(cz sgn c~) exp[- -c  ~] de (39) 

I~ = ~r -s/z f c, sgn c~ L(co~c.) exp[- -c  2] de (40) 

Is = 7r -s/2 f e~c~L(c,e~) exp[--c~l de (41)  

An obvious advantage o f  the present variational principle with respect to the 
old one is that one obtain rational rather than transcendental expression in 8 when 
using simple trial function;  on the other hand, it must  be expected that  the previous 
method reflects better any effects of  the kinetic boundary  layers. If  we evaluate the 
ratio of  the shearing stress p ~  to its free-molecular value p 0 ,  we obtain 

px, (5/2) + (y/~/~r) 
pO U/(2 V'~r) 

= 2[V'~r (8Ia - -  2rrlz) 8 -1- (4 - -  rr)] (42) 
A 

The values o f  the integrals/~ (k = 1, 2, 3) are known for the B G K  model,  Maxwell 
molecules, and rigid spheres. In fact, the evaluation is trivial for  the B G K  model:  

/1 = --1/(20), X2 = --1/(2 v /g  0), h = --1/40 (43) 

For  Maxwell molecules and rigid sphers, the three integrals are propor t ional  to the 
homonymous  integrals evaluated by Ziering (*s) and Gross and Ziering. (19~ The values 
for  Maxwell molecules are 

/1 = --  1.2392al,  12 = --0.37500q, /a = --0.3323% (44) 

and, for  rigid spheres, 

/1 = - -1 .0059%,  /2 = - -0 .4343%,  Ia = --0.4001~.a (45) 

where % and % are constants related to the constant  o f  the force in the case o f  
Maxwell molecules and the sphere diameter for  the rigid-sphere model. 
Equat ion (42) can be written as 

where 

pxJp~ = (a + V g  a)/(a + ba + ca '~) (46) 

813 - 2,~I1 

4r r ( / f la  - -  I~ 2) 
4/3 - -  r r / ,  

4--72" 
a = 8 I s  - 2 ~ I i  ( 4 7 )  

b = 87rI~ --  a/~r (4 + ~r) I1 - -  8 a /g  Is (48) 

c - ( 4 9 )  
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For  large values of 3 (continuum limit), Eq. (46) gives 

p=/po  ~ [v/~/(c3)]{1 _ [(b/c) - -  (a/a/g)]/3} + O(U 2) (50) 

It is convenient to assume a length of the order of the mean free path as length scale; 
if we relate the mean free path to the viscosity coefficient/z, pressurep, and temperature 
T as follows: 

l =  ( t z /p)@RT/2)  1/2 (51) 

we assume ~ = (2l)/~/~- as length scale. In such a case, the asymptotic behavior of 
0 Po~/P~, should be (@~r/3) + O(~-l);comparison with Eq. (50) gives 

c = 1 ( 5 2 )  

This relation is consistent for the BGK model and Maxwell molecules, since, in these 
cases, we have (s~ 

Hence, 

I2113 = 2/a/~r, I8 = -- ~r (53) 

c = - 4 I ~  = a/~r/(2l) = 1/~ (54) 

i f  we assume A as the scaling factor lengths, Eq. (52) is satisfied. For rigid spheres, 
the constant ~2 appearing in Eq. (45) is given by (19) 

~ = (2,~)1/~ n ~  2 ( 5 5 )  

where n is the number density (n = p/m)  and cr the  sphere diameter. Hence, 

c = 1.7228(2~r) z/2 n~ 2 (56) 

On the other hand, the viscosity coefficient for rigid spheres is (~1) 

i x --= O.1792(kTm)I/2/~r 2 (57) 

which gives 

)t = (21)/V'-~ = IL(2kT/m)l/2/p =-- 0.1792 a/2 kT/pcr ~ = 0.1792(a/2/mr 2) (58) 

Hence, 

c -=  1.0944/;~ (59) 

which is not in agreement with Eq. (52) for ;~ = 1. The reason for this discrepancy 
is dearly related to the fact that the trial function cannot become the correct solution 
in the continuum limit, as  was discussed elsewhere by the present author in another 
connection. (2~ For the moment, we shall ignore this discrepancy and use Eq. (52) 
as normalization condition for the length scale, although not in agreement with 
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)t -~ 1 for  rigid spheres. Then the constants appearing in Eq. (46) take on the following 
values: 

a = (4 - -  7r)/(Tr - -  2), b = 7r a/~r/2(~r --  2), c = 1 (60) 

a = 0.2225, b = 2.1400, c = 1 (61) 

a = 0.4741, b = 2.4014, c = 1 (62) 

The right hand  side o f  Eq. (46) can be easily tabulated, and the results are given in 
Table I; as is seen, the results for the three models are very close to each other (but 
this could be artificial for  rigid spheres, because o f  the chosen normalization).  

In  order to have an idea o f  the accuracy of  the results, one can compare  the results 
for  the B G K  model with the corresponding values obtained by Willis ~IG) by means 
o f  an accurate numerical solution o f  the B G K  equations. The moment  method formula  
obtained by Lees ~ )  

pjpO = ~/~r/(~ + ~/~r) (63) 

is also tabulated. I t  will be noticed that  the maximum disagreement f rom Willis 
result is about  0.5 ~ for Eq. (46) [with the B G K  values for the constants given by 
Eq. (60)] and about  5 ~o for  the moment  method. Both formulas give the exact con- 
t inuum and free-molecular values, but  a difference arises in the slip regime. In  fact, 
Eqs. (50) and (63) give for the slip coefficient (in h units) 

cr = (X/~r/4) ,-}- (1/~/~r) = 1.0073, 

the exact value being ~2z~ 

---- 1.0161 

cr ----- ~/~r/2 = 0.8862 (64) 

(65) 

Incidentally, the value given by Eq. (64) is the same given by the previous variational 
method with the simplest trial function. ~a) A similar evaluation o f  the slip coefficient 

Table I 

Variational method with trial function given by 

Lees' Eq. (34), Eq. (34), Eq. (34), Eq. (69), 
Willis ~16~ method BGK Maxwell rigid rigid 

b (BGK) [Eq. (63)] model molecules spheres spheres 

0.1 0.9258 0.9466 0.9238 0.8953 0.8994 0.9147 
1.9 0.6008 0.6393 0.6024 0.5933 0.5797 0.6051 
2.0 0.4440 0.4698 0.4462 0.4430 0.4332 0.4496 
3.0 0.3539 0.3714 0.3556 0.3542 0.3472 0.3583 
4,0 0.2946 0.3070 0.2958 0.2951 0.2900 0.2980 
5.0 0.2526 0.2617 0.2534 0.2529 0.2491 0.2550 
7.0 0.1964 0.2020 0.1969 0.1967 0.1943 0.1980 

10.0 0.1474 0.1506 0.1476 0.1476 0.1462 0.1483 
20.0 0.0807 0.0814 0.0805 0.0805 0.0801 0.0807 
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can be made for Maxwell molecules. Using the values #ven by Eq. (61), we 
obtain 

cr = (~/~r/4) + (1/v/~r) = 1.0073 (66) 

for Maxwell molecules, and 

cr = 1.0669 (67) 

for rigid spheres. The value given by Eq. (66) is the same as the one in Eq. (64), thus 
confirming the fact (8.2~) that the BGK model gives a value for cr very close to the 
value for Maxwell molecules. The value given by Eq. (67) is somewhat surprising, 
because all the available results (s,l~ agree in giving a slip coefficient for rigid spheres 
somewhat lower than the corresponding value for Maxwell molecules (for a given 
viscosity, pressure, and temperature). However the disagreement between Eq. (67) 
and the expected result is of  the same order as the discrepancy between the two 
normalizations c = 1 and ,~ = 1. If  we adopt the latter rather than the former (as 
we know, the two are coincident for Maxwell molecules and the BGK model) we 
obtain 

cr ---- 1.0669/1.0944 = 0.9749 (68) 

which is in a reasonably good agreement with the available results. (s-i~ This means 
that the trial function given by Eq. (34), although not capable of giving correct values 
for the viscosity and the slip coefficients, gives a reasonably accurate estimate of their 
ratio. This conclusion has been reached a posteriori and does not avoid the 
circumstance that the trial function we have been using is not satisfactory for mole- 
cules other than Maxwell's (or models of Maxwell's molecules). This fact could have 
been easily foreseen on the basis of the discussion given by Cercignani (2~ and can be 
avoided by the same kind of correction as the one proposed for the half-range 
expansions in the latter reference. A sketch of the modified computations is given in 
the next section. 

5. A MORE-REFINED TRIAL  F U N C T I O N  

In this section, we assume as trial function for plane Couette flow: 

f, = 2c~[~x -r fib(c) e~ + ~, sgn c~] (69) 

where b(c) is a function of the molecular speed satisfying 

2c~c~ = Lib(c) c~x,] (70) 

For Maxwell's molecules and the BGK model, b(c) is a constant; accordingly, the 
new trial function reduces, in these cases, to the previous one. In general, however, 
inserting Eq. (69) into Eq. (23), we obtain 

J(~) = -- [1/(2 V'~r)] cx~3 ~ + (4K -- 88J~) fiz + [(2/V'~r) -- 48Id y= 

+ 48&e~fi + (2/v'g) 8c W + [8J~ - (88/'V/~r)] f ir  

+ (UalV•) ~ + 4 u y ,  fi + (2u/x/gr) r (71) 



3O8 

where 11 is given by Eq. (39), and 

31 = rr -~/~ f b(c)  c~2c~ 2 exp[- -c  21 de (72) 

K = re -a/z f [b(c)] ~ ] c~ ]a c2 e x p [ _ c  2] de (73) 

The condit ion 8J  = 0 now gives 

(8/V'~r) o~ --  4J1/3 --  (2/v/Ta -) y = UIV'~r 

(2&8) a q- (4K --  88J~) 13 q- [4,/I - -  (48/V'7a')] y = - - 2 U J  1 (74) 

(8 /Vg-)  ~ + [4& - (4a /Vg- ) l  5 + [(2/~/g-) - 4811] y = - u / ' v F ~  

iie., 

= - [48(1 - 2rrI1J1) + 2 x/gr I1 (2K V'~r - -  4rrJl")]/A' 

fi = --2U8(1 --  2rrI1J1)/d '  (75) 

y = - -  U ( 2 K  ~/g- - -  4rrJ12)/A ' 

where 

,4' = [8rrlzal - -  41 82 q- (8J1 ~ --  8rr ~/~r J1211 - -  47rK/1) 8 q- (4K V'~r --  8rrJ,= ) 
(76) 

The ratio of  the shearing stress to its free-molecular value is 

p ~  (2J l f i  + ( y / ~ g )  
P~ = - -  U/(2  ~/~r) (77) 

i.e., we find again an equation of  the form shown in Eq. (46), with the following 
values for  the constants 

2K ~/~r - -  4~'J1 = a =  
4~r10 - 2 - I i J 0  

b =  2J1V'Tr - -  2rr~r " J1211 - -  rrKI1 (78) 
221(1 - 2 ,~ I i J0  

c = --1/(2J1) 

J1 is proport ional  to the homonymous  integral given by Cercignani ('m and is therefore 
related to the mean free paths l and )t = (2/)/V'gr as follows: 

J1 = - - I / V  '7rr = --~/2 (79) 

Accordingly, the agreement between the two normalizations (,~ = 1 and c = 1) is 
automatically verified, as was to be expected. With this normalization, the slip 
coefficient becomes 

= (~/~r/4) q- (K/SJ1  ~) (80) 

Carlo Cercignani 
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It is interesting to notice that the expression for e turns out to be rather simple, and, 
for a simple molecular model with velocity-dependent collision frequency, Eq. (60) 
is in agreement with the formulas obtained from the older variational principle. (8-z~ 

The advantage, here, is that we used the true linearized Boltzmann equation, 
rather than special models approximating the latter. Also, one immediately sees that 

is the same for Maxwell molecules and the BGK model to this level of approx- 
imation; this was to be expected, because in these cases, the new trial function reduces 
to the one used in Section 4. 

The fact that Eq. (80) is the same as the one obtained in previous paper has the 
further advantage that the ratio K/J1 ~ has already been evaluated with the b(e) appro- 
priate to rigid spheres. (s) Accordingly, we find from Eq. (80), 

cr = 0.9790 (81) 

a value rather different from the one given in Eq. (67) [but close to the one given in 
Eq. (68)]. This fact shows the importance of choosing a sensibly correct dependence 
of the trial function upon the velocity variable. 

By means of the numerical value f o r / 1 ,  as given by Gross and Ziering, (19) and K, 
as deduced from the value for the slip coefficient given by Loyalka and Ferziger, (a) 
it is possible to evaluate the coefficients in Eq. (46) as given by Eq. (78), for the case 
of rigid spheres. Taking ;t as length scale, the values of a, b, and c are 

a = 0.3264, b = 2.1422, c = I (82) 

It  is then possible to tabulate the stress versus the inverse Knudsen number 3 (Table I). 
Even with the amended trial function, the influence of the molecular model on the 
stress is not very marked, the difference between rigid spheres and Maxwell's molecules 
reaching a maximum of about 2 ~o in the nearly-free-molecular regime. It is also to 
be noted that in the latter regime, the results for the BGK model are closer to those 
for rigid spheres than those for Maxwell's molecules. 

6. I N F L U E N C E  O F  T H E  B O U N D A R Y  C O N D I T I O N S  

In the previous two sections, the boundary conditions of  diffuse reflection were 
assumed at the wall. It is obvious that no problems arise in extending the previous 
calculations to any model of the boundary conditions one might wish to use. In 
particular, Maxwell's boundary conditions can be easily handled and do not produce 
any new integrals besides the already computed ones. 

Equally easy is the use of finite-rank approximations to the operator A of the 
kind suggested previously; (14'15) new integrals arise for high-order approximations to 
A, but they are trivial to compute when the trial function of Section4 is used (hence, the 
calculations are both simple and accurate for Maxwell's molecules). We note that 
within the limits of the accuracy of the computations presented in the previous 
sections a finite-rank operator with a kernel engendered by c~, c~c, should be a 
satisfactory approximation. A simpler boundary condition is based on a kernel 
engendered by c, alone; in such a case, a single parameter enters which can be easily 
related to the accommodation coefficient for the tangential momentum. ~5) There 
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is no point in doing the calculations with the latter model for boundary conditions, 
since it can be shown ~25) that the solution for a general value of the accommodation 
coefficient can be expressed in terms of the solution corresponding to diffuse reflection. 

7. C O N C L U D I N G  REMARKS 

A variational principle has been shown to hold for the linearized Boltzmann 
equation with fairly general boundary conditions; the functional having zero variation 
when the trial function becomes the true solution of the problem has been shown to 
be simply related to quantities of  basic interest for a significant class of  problems. 
I t  is to be noted that the principle is not a minimum or a maximum principle, since, 
in general, the points of  zero variation will be saddle points; in spite of  this, thanks 
to the connection between the physically interesting quantities and the basic functional, 
the principle lends itself to accurate evaluations of overall coefficients, such as drag, 
heat transfer, etc. The advantage with respect to the previously known methods ~1-1~ 
is that general molecular models can be used, including models with formally infinite 
collision frequency, and the resulting expression are rational in the Knudsen number. 
The latter circumstance can be particularly useful for making meaningful comparisons 
with correlations of experimental data. 

The general method has been applied to a specific problem, plane Couette flow; 
the latter has been exhaustively studied by different authors and no new results could 
be expected, but just this fact makes the problem a significant one for a test of  accur- 
acy. The application of the method to less-simple problems, in cylindrical geometry, 
seems to constitute an interesting subject for future research. 
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